The following course Industrial Process is provided in its entirety by Atlantic
International University's "Open
Access Initiative" which strives to make knowledge
and education readily available to those seeking advancement
regardless of their socio-economic situation, location
or other previously limiting factors. The University's
Open Courses are
free and do not require any purchase or registration,
they are open to the public.
The course in Industrial Process contains the following:
- Lessons in video format with explaination of theoratical content.
- Complementary activities that will make research more about the topic , as well as put into practice what you studied in the lesson. These activities are not part of their final evaluation.
- Texts supporting explained in the video.
The Administrative Staff may be part of a degree program paying up to three college credits. The lessons of the course can be taken on line Through distance learning. The content and access are open to the public according to the "Open Access" and " Open Access " Atlantic International University initiative. Participants who wish to receive credit and / or term certificate , must register as students.
Lesson 1: GENERAL PROCESS
The processes are used for scientific, industrial and commercial purposes. Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling; a few, such as carbon dioxide, require pressurization as well. Liquefaction is used for analyzing the fundamental properties of gas molecules (intermolecular forces), for storage of gases, for example: LPG, and in refrigeration and air conditioning. There the gas is liquefied in the condenser, where the heat of vaporization is released, and evaporated in the evaporator, where the heat of vaporization is absorbed. Ammonia was the
2
first such refrigerant, and is still in widespread use in industrial refrigeration, but it has largely been replaced by compounds derived from petroleum and halogens in residential and commercial applications.
Lesson 2: CHEMICAL PROCESS
Nitrogen is a strong limiting nutrient in plant growth. Carbon and oxygen are also critical, but are easily obtained by plants from soil and air. Even though air is 78% nitrogen, atmospheric nitrogen is nutritionally unavailable because nitrogen molecules are held together by strongtriple bonds. Nitrogen must be 'fixed', i.e. converted into some bioavailable form, through natural or man-made processes. It was not until the early 20th century that Fritz Haber developed the first practical process to convert atmospheric nitrogen to ammonia, which is nutritionally available. Prior to the discovery of the Haber process, ammonia had been difficult to produce on an industrial scale.Nitrogen fixation was already being done on an industrial scale using the Birkeland–Eyde process, but this is very energy-inefficient.
Lesson 3: HEAT PROCESS
A second flash smelting system was developed by the International Nickel Company ('INCO') and has a different concentrate feed design compared to the Outokumpu flash furnace.[4] The Inco flash furnace has end-wall concentrate injection burners and a central waste gas off-take,[4] while the Outokumpu flash furnace has a water-cooled reaction shaft at one end of the vessel and a waste gas off-take at the other end.[5] While the INCO flash furnace at Sudbury was the first commercial use of oxygen flash smelting,[6] fewer smelters use the INCO flash furnace than the Outokumpu flash furnace.[4]
Flash smelting with oxygen-enriched air (the 'reaction gas') makes use of the energy contained in the concentrate to supply most of the energy required by the furnaces.[4][5] The concentrate must be dried before it is injected into the furnaces and, in the case of the Outokumpu process, some of the furnaces use an optional heater to warm the reaction gas typically to 100–450 °C.
Lesson 4: Electrolysis
Each electrode attracts ions that are of the opposite charge. Positively charged ions (cations) move towards the electron-providing (negative) cathode. Negatively charged ions (anions) move towards the electron-extracting (positive) anode.
In this process electrons are either absorbed or released. Neutral atoms gain or lose electrons and become charged ions that then pass into the electrolyte. The formation of uncharged atoms from ions is called discharging. When an ion gains or loses enough electrons to become uncharged (neutral) atoms, the newly formed atoms separate from the electrolyte. Positive metal ions like Cu++ deposit onto the cathode in a layer. The terms for this are electroplating electrowinning and electrorefining. When an ion gains or loses electrons without becoming neutral, its electronic charge is altered in the process. In chemistry the loss of electrons is called oxidation while electron gain is called reduction.
Lesson 5: CUTTING
A punch (or moving blade) is used to push the workpiece against the die (or fixed blade), which is fixed. Usually the clearance between the two is 5 to 40% of the thickness of the material, but dependent on the material. Clearance is defined as the separation between the blades, measured at the point where the cutting action takes place and perpendicular to the direction of blade movement. It affects the finish of the cut (burr) and the machine's power consumption. This causes the material to experience highly localized shear stresses between the punch and die. The material will then fail when the punch has moved 15 to 60% the thickness of the material, because the shear stresses are greater than the shear strength of the material and the remainder of the material is torn. Two distinct sections can be seen on a sheared workpiece, the first part being plastic deformation and the second being fractured. Because of normal inhomogeneities in materials and inconsistencies in clearance between the punch and die, the shearing action does not occur in a uniform manner.
Lesson 6: DISTILLATION
Physical changes occur when objects or substances undergo a change that does not change their chemical composition. This contrasts with the concept of chemical change in which the composition of a substance changes or one or more substances combine or break up to form new substances. In general a physical change is reversible using physical means. For example salt dissolved in water can be recovered by allowing the water to evaporate.
A physical change involves a change in physical properties. Examples of physical properties include melting, transition to a gas, change of strength, change of durability, changes to crystal form, textural change, shape, size, color, volume and density.
Lesson 7: Radio resource management (RRM) Medium Access Control (MAC)
The first evidence of distillation comes from Greek alchemists working in Alexandria in the 1st century AD.[2] Distilled water has been known since at least c. 200, when Alexander of Aphrodisias described the process.[3] Distillation in China could have begun during the Eastern Han Dynasty (1st–2nd centuries), but archaeological evidence indicates that actual distillation of beverages began in the Jin and Southern Song dynasties.[4] A still was found in an archaeological site in Qinglong, Hebei province dating to the 12th century. Distilled beverages were more common during the Yuan dynasty.[4] Arabs learned the process from the Alexandrians and used it extensively in their chemical experiments.
Lesson 8: ADDITIVE
FDM begins with a software process which processes an STL file (stereolithography file format), mathematically slicing and orienting the model for the build process. If required, support structures may be generated. The machine may dispense multiple materials to achieve different goals: For example, one may use one material to build up the model and use another as a soluble support structure,[3] or one could use multiple colors of the same type of thermoplastic on the same model.
The model or part is produced by extruding small beads of thermoplastic material to form layers as the material hardens immediately after extrusion from the nozzle.
Lesson 9: IRON AND STEEL
Early production of iron was from meteorites, or as a by-product of copper refining. Heating iron ore and carbon in a crucible at 1000 K produces wrought iron. This process gained popularity during the Iron Age. Temperatures of 1300 K were produced around the 8th century by blowing air through the heated mixture in a bloomery or blast furnace (12th century); producing a strong but brittle cast iron. Furnaces were growing bigger, producing greater quantities; a factor contributing to the Industrial Revolution. In 1740 the temperature and carbon content could be controlled sufficiently to consistently produce steel; very strong and very workable. The 19th century saw the development of electric arc furnaces that produced steel in very large quantities, and are more easily controlled.
Lesson 10: PETROLEUM AND ORGANIC COMPOUNDS
In petroleum geology and chemistry, cracking is the process whereby complex organic molecules such as kerogens or heavy hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large alkane into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking a long-chain of hydrocarbons into short ones.
More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis.
We understand how busy adults do not have time to go back to school. Now, it's possible to earn your degree in the comfort of your own home and still have time for yourself and your family. The Admissions office is here to help you, for additional information or to see if you qualify for admissions please contact us. If you are ready to apply please submit your Online Application and paste your resume and any additional comments/questions in the area provided. (Online Application) (Request Info)
Atlantic International University
800-993-0066 (Gratis en EUA)
808-924-9567 (Internacional) |